Calculation of electron-phonon coupling in Arsenic under pressure1 KEVIN T. CHAN, MARVIN L. COHEN, Dept. of Physics, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory — Elemental As undergoes a structural transformation from a rhombohedral A7 phase to a simple cubic (sc) phase at around 25 GPa as pressure is increased. At pressures near this phase transformation, As is superconducting, with a maximum superconducting transition temperature T_c of about 2.5 K. Experiments indicate that this maximum T_c occurs at the transition pressure for structural transformation, and the increase in T_c as the transition pressure is approached has been attributed to phonon softening. In this work, we calculate from first principles the electronic structure, phonon dispersions, and electron-phonon coupling constant λ for As in the A7 and sc phases at various pressures near the A7 to sc transition. Using these detailed quantitative calculations, we explain the trends in T_c as function of pressure in terms of phonon softening, electronic density of states, and electron-phonon matrix elements. We discuss the implications of these results for finding new superconducting materials.

1This work was supported by NSF Grant No. DMR10-1006184 and DOE under Contract No. DE-AC02-05CH11231. Computational resources were provided by NSF through XSEDE and by DOE at NERSC.

Kevin T. Chan
Dept. of Physics, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory

Date submitted: 12 Dec 2011
electronic form version 1.4