Measuring Coexisting Phases in La$_{0.625-y}$Pr$_y$Ca$_{0.375}$MnO$_3$ Mark H. Burkhardt, SIMES, SLAC National Accelerator Laboratory and Stanford University, M.A. Hosain, S. Sarkar, H.A. Dürr, J. Stöhr, SIMES, SLAC National Accelerator Laboratory, Y.-D. Chuang, A.G. Cruz Gonzalez, A. Doran, A. Scholl, A.T. Young, Advanced Light Source, Lawrence Berkeley National Laboratory, Y.J. Choi, S.-W. Cheong, Rutgers Center for Emergent Materials and Department of Physics & Astronomy — Manganite compounds in the La$_{0.625-y}$Pr$_y$Ca$_{0.375}$MnO$_3$ series are known for exhibiting phase separation over a large temperature range. We combined the x-ray photoemission electron microscopy (PEEM) and resonant elastic soft x-ray scattering (RSXS) techniques to study the interplay between the low-temperature ferromagnetic and intermediate temperature charge-ordered/antiferromagnetic phases, respectively, in La$_{0.35}$Pr$_{0.275}$Ca$_{0.375}$MnO$_3$. We found that the system is driven by glassy polarons, which are present above the curie temperature T_C in many ferromagnetic metallic manganites. They stunt the growth of the ferromagnetism on cooling: we clearly observe the onset of small, strained ferromagnetic domains almost 30 K above the temperature where ferromagnetism fully sets in, and the ferromagnetism has a very unconventional temperature dependence even below T_C. This relationship could explain the need for such high magnetic fields to induce colossal magnetoresistance.

This research and the ALS are supported by U.S. Department of Energy, Office of Basic Energy Sciences.