Abstract Submitted for the MAR12 Meeting of The American Physical Society

First-principles calculations of finite temperature Sc and O NMR parameters in Pb(Sc_{2/3}W_{1/3})O₃¹ HENRY KRAKAUER, ERIC J. WALTER, JEREMY ELLDEN, GINA L. HOATSON, ROBERT L. VOLD, College of William and Mary — Understanding the dynamics of complex relaxor ferroelectrics is important to characterizing their large electromechanical coupling. Preliminary NMR measurements of Sc electric-field-gradients (EFG) in Pb(Sc_{2/3}W_{1/3})O₃ (PSW) show a strong temperature dependence in the range T = 250 - 330 K. To understand this behavior, we use the first-principles GIPAW² method within the Quantum Espresso (QE) package³ to calculate ⁴⁵Sc and ¹⁷O chemical-shifts and EFG tensors. To study finite temperature effects, we incorporate the thermal expansion of the lattice and sample thermal disorder, using the phonon degrees of freedom. As in our previous studies of perovksites,⁴ we show that the ¹⁷O chemical shifts in PSW also exhibit a linear correlation with the nearest-neighbor B-O bond length.

¹Supported by NSF, ONR.

²C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001);
³P. Giannozzi et al., Journal of Physics: Condensed Matter 21, 395502 (2009)
⁴D. L. Pechkis, E. J. Walter, and H. Krakauer. J. Chem. Phys. 135, 114507 (2011); *ibid.* 131, 184511 (2009)

Eric J. Walter College of William and Mary

Date submitted: 21 Nov 2011

Electronic form version 1.4