Long Spin Relaxation and Coherence Times of Electrons In Gated Si/SiGe Quantum Dots

JIANHUA HE, A.M. TYRYSHKIN, S.A. LYON, Princeton University, C.-H. LEE, S.-H. HUANG, C. W. LIU, National Taiwan University — Single electron spin states in semiconductor quantum dots are promising candidate qubits. We report the measurement of 250 $\mu$s relaxation ($T_1$) and coherence ($T_2$) times of electron spins in gated Si/SiGe quantum dots at 350 mK. The experiments used conventional X-band (10 GHz) pulsed electron spin resonance (pESR), on a large area ($3.5 \times 20 \text{ mm}^2$) dual-gate undoped high mobility Si/SiGe heterostructure sample, which was patterned with $2 \times 10^8$ quantum dots using e-beam lithography. Dots having 150 nm radii with a 700 nm period are induced in a natural Si quantum well by the gates. The measured $T_1$ and $T_2$ at 350 mK are much longer than those of free 2D electrons, for which we measured $T_1$ to be 10 $\mu$s and $T_2$ to be 6.5 $\mu$s in this gated sample. The results provide direct proof that the effects of a fluctuating Rashba field have been greatly suppressed by confining the electrons in quantum dots. From 0.35 K to 0.8 K, $T_1$ of the electron spins in the quantum dots shows little temperature dependence, while their $T_2$ decreased to about 150 $\mu$s at 0.8 K. The measured 350 mK spin coherence time is 10 times longer than previously reported for any silicon 2D electron-based structures, including electron spins confined in “natural quantum dots” formed by potential disorder at the Si/SiO$_2$ or Si/SiGe interface, where the decoherence appears to be controlled by spin exchange.

$^1$supported by NSA/LPS and the ARO (W911NF-04-1-0389)


Ryan Jock
rjock@princeton.edu
Princeton University

Prefer Oral Session
Prefer Poster Session

Date submitted: 12 Dec 2011

Electronic form version 1.4