Magnetically aligned polymers and nanocomposites for energy harvesting and energy storage applications

PAWEL MAJEWSKI, MANESH GOPINADHAN, CANDICE PELLIGRA, Yale University, SHANJU ZHANG, California Polytechnic State University, LISA PFEFFERLE, Yale University, LUIS CAMPOS, Columbia University, CHINEDUM OSUJI, Yale University — The realization of anisotropic, nanostructured, functional materials by self-assembly is impaired by the persistence of structural defects which render the properties of the system isotropic on macroscopic length scales. We present three distinct systems including ZnO nanowire-semiconducting polymer composites, Li-ion conducting block copolymer membranes, and perylene-based block copolymers where self-assembly under a magnetic field yields alignment and global anisotropy of their physical properties. The resulting aligned nanostructured systems are attractive for ordered heterojunction photovoltaics, high performance solid polymer electrolyte membranes and electro-optical devices, respectively. Our results demonstrate that magnetic fields offer a viable route for directing the self-assembly of certain soft functional materials. The ready scalability of this approach makes it potentially important from a technological standpoint.

The funding from NSF under DMR-0847534 and DMR-0934520 is gratefully acknowledged.