Student Autonomy and its Effects on Student Enjoyment in a Traditional Mechanics Course for First-Year Engineering Students

JANAKI I. PERERA, BRENDAN T. QUINLIVAN, JENNIFER A. SIMONOVICH, EMILY TOWERS, OREN H. ZADIK, YEVGENIYA V. ZASTAVKER, F. W. Olin College of Engineering — In light of recent literature in educational psychology, this study investigates instructional support and students’ autonomy at a small technical undergraduate school. Grounded theory is used to analyze twelve semi-structured open-ended interviews about engineering students’ experiences in Introductory Mechanics that includes Lecture, Recitation, and Laboratory components. Using data triangulation with each course component as a unit of analysis, this study examines students’ course enjoyment as a function of instructional support and autonomy. The Lecture utilizes traditional instructor-centered pedagogy with predominantly passive learning and no student autonomy. The Recitation creates an active learning environment through small group work with a moderate degree of autonomy. The Laboratory is designed around self-guided project-based activities with significant autonomy. Despite these differences, all three course components provide similar levels of instructional support. The data reveal that students enjoy the low autonomy provided by Lecture and Recitations while finding the Laboratory frustrating. Analyses indicate that the differences in autonomy contribute to students’ misinterpretation of the three course components’ value within the context of the entire course.

1NSF HRD #0624738

Yevgeniya V. Zastavker
F. W. Olin College of Engineering

Date submitted: 21 Nov 2011

Electronic form version 1.4