Investigation of the role of spin-texture on the Na$_{0.46}$CoO$_2$

J.W. KIM, E.-D. MUN, R. MCDONALD, J. THOMPSON, I. MARTIN, C. BATISTA, V. ZAPF, LANL, P. MOLL, ETH-Zurich, A. MORPURGO, University of Geneva, D. ARGYRIOU, Helmholtz-Zentrum Berlin für Materialien und Energie — We will present magnetotransport properties and their relationship to a possible chiral spin texture in ultra-thin Na$_{0.46}$CoO$_2$ devices in high magnetic fields. This composition exhibits a weakly insulating state, with a frustrated local spin texture, unique, among the hexagonal Na$_x$CoO$_2$ family. Previous a large large Hall effect was found for composition $x=0.5$ (M. Foo et al., Phys. Rev. Lett. 92, 247001 (2004)) and prior high-field studies (L. Balicas et al., Phys. Rev. Lett. 94, 236402 (2005).) have found the existence of a small Fermi surface in the system and a two-fold angular magnetoresistance. To date however, the Hall-conductivity has not been investigated in magnetic fields strong enough to suppress the charge-order, above 41 T. Herein, we investigate the role of local spin-texture (in the charge-ordered state) on the Hall conductance by measuring both bulk and devices with only several monolayers thick in strong magnetic fields. Our investigations under magnetic fields ($B <60$ T) show that the high resistivity charge-order region is suppressed with out-of-plane field at $B \sim 41$ T with highly non-monotonic $-\rho_{xy}$ with a maximum at $B \sim 27$ T and rapidly decreases to zero. However, magnetization measurements show no significant features within measurement accuracy indicating that magnetization changes are small at the field-induced phase transition. Recent theoretical advances suggest that this compound exhibits a quantum Hall state coupled with spin chirality (I. Martin, C. D. Batista, Phys. Rev. Lett. 101, 156402 (2008)).