Abstract Submitted for the MAR12 Meeting of The American Physical Society

Study of MgB₂ Films for RF Cavity Applications¹ TENG TAN, CHENGGANG ZHUANG², ALEX KRICK, KE CHEN, XIAOXING XI, Department of Physics, Temple University — Magnesium diboride (MgB₂) is a promising superconducting material for RF cavity applications due to its high critical temperature T_c and large thermodynamic critical field H_c . Using Hybrid Physical-Chemical Vapor Deposition (HPCVD), we have grown 2"-diameter MgB₂ films on sapphire and metal substrates, including molybdenum, niobium, tantalum, and stainless steel. Measured by DC magnetization, the T_c 's of these films were between 38.2 to 39.2 K; the upper critical field H_{c2} 's were about 7 T, in consistent with previously reported value of clean MgB₂ films; the zero-field critical current density J_c 's were above 10⁷ A/cm² and were suppressed rapidly by increasing applied magnetic field, indicating a lack of pinning in clean MgB₂ films. Multilayered MgB₂/MgO films were also investigated to prevent vortex penetrating the MgB₂ layer and increase the vortex penetration field (H_{c1}) following Gurevich's theoretical work [1]. The RF properties of these films were studied.

[1] A. Gurevich, Appl. Phys. Lett. 88, 012511 (2006).

¹This work is supported by DOE under grant No. DE-SC0004410 ²Now at Corning Research Center, China

> Teng Tan Department of Physics, Temple University

Date submitted: 12 Dec 2011

Electronic form version 1.4