Disorder Induced Melting of Charge Density Wave Order in doped 2H-NbSe2 systems

UTPAL CHATTERJEE, STEPHAN ROSENKRANZ, JOHN CASTELLAN, JASPER VAN WEZEL, RAY OSBORN, Argonne National Laboratory, MARIA IVARONE, Temple University, GORAN KARAPETROV, Drexel University — Using a combination of Angle Resolved Photoemission Spectroscopy (ARPES), X-ray diffraction, transport and Scanning Tunneling Microscopy (STM) measurements on pristine as well as disordered 2H-NbSe2 samples, we have found that the onset Temperature T_{cdw} for Long Ranged Charge Density Wave (CDW) order gets quickly suppressed with concentration of disorder ions (X) and at certain critical concentration (Xc) it undergoes a quantum melting. Our STM measurements provide the evidence for local CDW ordering in doped samples for temperatures way above T_{cdw}. On the other hand, our ARPES measurements have found evidences for the presence of energy gap for both T>T_{cdw} & X>Xc. We argue, all these experimental observations from completely different probes hint towards phase fluctuations of the order parameter as the mechanism behind the destruction of CDW order in quasi 2-d systems, such as 2H-NbSe2.