First-principles spectroscopic characterization of PbSe nanoparticles passivated with Fe complexes

KEITH GILMORE, AARON HAMMACK, APRIL SAWVEL, EVELYN ROSEN, D. FRANK OGLETREE, JEFFREY URBAN, DELIA MILLIRON, BRETT HELMS, BRUCE COHEN, DAVID PRENDEGGAST, Lawrence Berkeley National Lab, THE MOLECULAR FOUNDRY TEAM — Given that defining characteristics of nanoparticles – morphology, catalytic reactivity, optical and electronic properties – are often dictated by their surfaces, it is informative to investigate how surface chemistry and structure change as different ligands are introduced to the surface. Starting with oleate-passivated PbSe nanoparticles, we remove the oleate ligands and replace them with an organometallic complex: cyclopentadienyl iron dicarbonyl. Measured and calculated x-ray photoemission core-level shifts indicate a charge transfer between surface Pb atoms and Fe atoms. We investigate the nature of this charge transfer in more detail through analysis of x-ray absorption spectra (XAS) at the Fe L-edge. Fe XAS are calculated from first-principles using a GW-based Bethe-Salpeter approach. The spectra reveal that the extent to which pi-backbonding is possible between the Fe and associated carbonyls varies with the charge density on the Fe atom.