Evolution of the phase diagrams in the pseudoternary system \(\text{Pr}_{1-x}\text{Nd}_x\text{Os}_4\text{Sb}_{12} \)

P.-C. HO, Physics/California State University, Fresno, R.B. BAUMBACH, L. SHU, M.B. MAPLE, Physics/University of California, San Diego, S. ZHAO, D.E. MACLAUGHLIN, Physics/University of California, Riverside, T. YANAGISAWA, Hokkaido University, Japan — The pseudo ternary system \(\text{Pr}_{1-x}\text{Nd}_x\text{Os}_4\text{Sb}_{12} \) has been used as a model system to investigate the effect of ferromagnetism (FM) on the unconventional superconductivity (SC), the high field ordered phase (HFOP), and quantum critical behavior [1], that was observed in \(\text{PrOs}_4\text{Sb}_{12} \). SC in this system disappears near the Nd concentration \(x \sim 0.58 \). Between \(x \sim 0.33 \) and \(0.58 \), weak FM, confirmed by the \(\mu \)SR experiments [2], was found to coexist with SC. In order to further inspect the possible quantum critical behavior, a power-law analysis of the temperature dependence of the electrical resistivity data was performed. Upon suppression of SC, for samples in the range \(0.33 < x < 0.58 \), the power-law exponent decreases from \(\sim 1.8 \) toward 1 in the temperature region below 2.5 K, resembling non-Fermi liquid behavior. Detailed T-x, H-x, and H-T phase diagrams for various x will be discussed.

Research at CSU-Fresno is supported by NSF DMR-1104544; at UC San Diego by NSF DMR-0802478 and US DOE DE FG02-04ER46105; at UC Riverside by NSF DMR-0801407; at Hokkaido U by MEXT, Japan.

Pei-Chun Ho
Physics/California State University, Fresno

Date submitted: 14 Dec 2011

Electronic form version 1.4