Magnetic Behavior of Complex Oxide Magnetic Tunnel Junctions\textsuperscript{1} SUZANNE G.E. TE VELTHUIS, YAOHUA LIU, J.W. FREELAND, Argonne National Laboratory, USA, M. ZHERNENKOV, M.R. FITZSIMMONS, Los Alamos National Laboratory, USA, C. VISANI, M. BIBES, A. BARTHÉLÉMY, Unité mixte de Physique CNRS/Thales, France, F. CUELLAR, Z. SEFRIOUI, C. LEON, J. SANTAMARIA, Universidad Complutense de Madrid, Spain — Half metallic manganese oxides have the potential of producing a large tunneling magnetoresistance (TMR) due to their high spin-polarization. To explore their applicability we investigated magnetic tunnel junctions (MTJs) with ferromagnetic La$_{0.7}$Ca$_{0.3}$MnO$_3$ (LCMO) electrodes and an insulating PrBa$_2$Cu$_3$O$_7$ (PBCO) barrier. In these MTJs, with temperature, the TMR peaks rather than increasing with decreasing T \cite{1}. Our Polarized Neutron Reflectivity studies reveal differences in the magnetization, reversal behavior, and anisotropy, between the bottom and top LCMO layers. As was observed in the YBa$_2$Cu$_3$O$_7$ (YBCO)/LCMO system \cite{2,3}, with X-Ray Magnetic Circular Dichroism we have found a non-zero net moment on the Cu of PBCO at low temperature, originating at the interface. Unlike for YBCO, the Cu moment does not persist up to T$_C$ of LCMO. These combined results provide a possible origin of the anomalous TMR behavior.


\textsuperscript{1} Work supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract Nos. DE-AC02-06CH11357, DE-AC02-06NA25396 and the Spanish MICINN.

Suzanne G.E. te Velthuis
tevelthuis@anl.gov

Argonne National Laboratory

Date submitted: 15 Dec 2011

Electronic form version 1.4