Quasiparticle properties in graphene

EUYHEON HWANG, CMTC, University of Maryland at College Park

The quasiparticle properties in both single layer and bilayer graphene are presented. We study the electron self-energy as well as the quasiparticle spectral function in graphene, taking into account electron-electron interaction in the leading order dynamically screened Coulomb coupling and electron-impurity interaction associated with quenched disorder. Our calculation of the self-energy provides the basis for calculating all one-electron properties of graphene. We provide analytical and numerical results for quasiparticle renormalization in graphene. Comparison with existing angle-resolved photoemission spectroscopy measurements shows broad qualitative and semiquantitative agreement between theory and experiment, for both the momentum-distribution and energy-distribution curves in the measured spectra. We also present the inelastic quasiparticle scattering rate and the carrier mean free path for energetic hot electrons as a function of carrier energy, density, and temperature, including both electron-electron and electron-phonon interactions. Our results are directly applicable to device structures where ballistic transport is relevant with inelastic scattering dominating over elastic scattering.


1This work is done in collaboration with R. Sensarma, B. Hu, and S. Das Sarma, and supported by CNAM, US-ONR and NSF-NRI.