Abstract Submitted for the MAR12 Meeting of The American Physical Society

Single-particle and optical self-energies of a Fermi liquid revisited DMITRII MASLOV, University of Florida, ANDREY CHUBUKOV, University of Wisconsin — We discuss the conditions under which the imaginary part of the single-particle self-energy at the Fermi surface $\Sigma(\omega,T)$ and the optical scattering rate $1/\tau(\Omega,T)$ have particular simple scaling forms $\mathrm{Im}\Sigma(\omega,\mathrm{T}) \propto \omega^2 + \pi^2\mathrm{T}^2$ and $1/\tau(\Omega,T) \propto \Omega^2 + 4\pi^2T^2$. We show that these relations follow from particular analytic properties of the effective fermion-fermion interaction and are only satisfied when the single-particle and optical self-energies are analytic functions of the frequency. When they are not, the scaling forms are more complex even if the system remains a Fermi liquid. We also address recently observed violation of the $\Omega^2 + 4\pi^2T^2$ form of $1/\tau$ in URu₂Si₂ and discuss possible mechanisms of this violation.

Dmitrii Maslov University of Florida

Date submitted: 11 Nov 2011 Electronic form version 1.4