Spin Correlations and Excitations in the Quasi-2D Triangular Bilayer Spin Glass LuCoGaO$_4$

K. FRITSCH, McMaster University, Hamilton, G.E. GRANROTH, A.T. SAVICI, Neutron Scattering Sciences Division, ORNL, Oak Ridge, H.M.L. NOAD, McMaster University, Hamilton, H.A. DABKOWSKA, B.D. GAULIN, McMaster University, Brockhouse Institute for Materials Research, Hamilton — LuCoGaO$_4$ is a layered magnetic-bilayer material wherein Co$^{2+}$ magnetic moments and nonmagnetic Ga$^{3+}$ ions are randomly distributed on planar triangular bilayers. This makes it an ideal case to study the interplay between geometric frustration, site disorder and low dimensionality and its influence on the magnetic ground of the system. This novel material has been grown for the first time in single crystal form at McMaster University. We have performed magnetization measurements, revealing a previously identified spin glass transition near $T_f \sim 19K$, and a Curie Weiss temperature of $T_{cw} \sim -96K$, consistent with antiferromagnetic interactions[1]. We discuss time-of-flight neutron scattering measurements using SEQUOIA at SNS which elucidate the evolution of the static and dynamic spin correlations in LuCoGaO$_4$ over a range of temperatures from $T < \langle T_f \rangle \sim T > T_{cw}$. We observe quasielastic scattering at $(1/3,1/3,L)$ positions in reciprocal space and rods of scattering along the c*-direction, consistent with short range antiferromagnetic correlations within decoupled bilayers, and which confirm the 2-dimensional character of this system. Inelastic scattering measurements show a gapped ~ 12 meV spin excitation which softens and broadens in energy, filling in the gap on a temperature scale of $\sim T_{cw}/2$. [1] Cava et al., J. Solid State Chem. 140, 337 (1998).