Uncover the nature of cubic-rhombohedral transition in Fe$_{1-x}$O
QINGYANG HU, George Mason University, YANG DING, HPSynC, Carnegie Institute Washington, HONGWEI SHENG, George Mason University — Transition metal monoxide Fe$_{1-x}$O is an archetypal Mott insulator and an important geological compound. Despite considerable study during the past few decades, the origin of the high-pressure cubic-rhombohedral transition in this fundamental material is still not fully understood. Combining high-pressure nanoscale x-ray diffraction imaging techniques, we conducted density-functional theory (DFT) based first-principles calculations to reveal the nature of the transition. Our theoretical calculations confirm the conclusions drawn from our imaging experiments that the pressure-induced rhombohedral distortion of Fe$_{1-x}$O is associated with $<111>$ stacking defects cluster and is ferroelectric in nature.

Qingyang Hu
George Mason University

Date submitted: 12 Dec 2011