1/f Noise in Delta Doped GaAs/AlGaAs Heterostructures

YUN SUK EO, STEVEN WOLGAST, CAGLIYAN KURDAK, University of Michigan Department of Physics, L. N. PFEIFFER, K. W. WEST, Princeton University Department of Electrical Engineering — We studied 1/f noise of a two-dimensional electron gases (2DEG) in δ-doped GaAs/Al_xGa_{1-x}As heterostructures. Three samples that we measured were identical except for the δ-doping concentration: 9.1 × 10^{18}(cm^{-2})(high), 1.3 × 10^{18}(cm^{-2})(medium), 0.3 × 10^{18}(cm^{-2})(low). These δ-doping layers are located in the Al_xGa_{1-x}As region, 800Å above the GaAs and Al_xGa_{1-x}As interface. We fabricated Corbino and Hall bar structures with different sizes. Carrier density was varied by the persistent photoconductivity effect at low temperature (4.2K). Initially, the samples did not exhibit measurable 1/f noise. The high δ-doping concentration samples exhibited parallel conduction. As we increased the carrier concentration in the high and medium-doped samples, 1/f noised increased initially, but disappeared as the photo current was saturated. The low-doped samples did not exhibit 1/f noise as the carrier concentration was increased. We conclude that 1/f noise is caused by the remote ionized impurities in the δ-doped region. Also, changing the DX-center configuration changes the density of the ionized impurities, which then changes the magnitude of 1/f noise.

1University of Michigan was funded by the NSF (DMR-1006500). Princeton University was funded by the Gordon and Betty Moore Foundation and the NSF MRSEC Program (DMR-0819860)