Photoelectron Angular Distributions of Transition Metal Dioxide Anions - a joint experimental and theoretical study

IVAN IORDANOV, Department of Physics, Pennsylvania State University, DASITHA GUNARATNE, CHRISTOPHER HARMON, Department of Chemistry, Pennsylvania State University, JORGE SOFO, Department of Physics, Pennsylvania State University, A.W. CASTLEMAN, JR, Department of Chemistry, Pennsylvania State University — Angular-resolved photoelectron spectroscopy (PES) studies of the MO\(_2\)- (M=Ti, Zr, Hf, Co, Rh) clusters are presented for the first time along with theoretical calculations of their properties. We confirm previously reported non-angular PES results for the vertical detachment energies (VDE), vibrational energies and geometric structures of these clusters and further explore the effect of the 'lanthanide contraction' on the MO\(_2\)- clusters by comparing the electronic spectra of 4d and 5d transition metal dioxides. Angular-resolved PES provides the angular momentum contributions to the HOMO of these clusters and we use theoretical calculations to examine the HOMO and compare to our experimental results. First-principles calculations are done using both density functional theory (DFT) and the coupled-cluster, singles, doubles and triples (CCSD(T)) methods.

Ivan Iordanov
Department of Physics, Pennsylvania State University

Date submitted: 11 Nov 2011
Electronic form version 1.4