NMR study of the spin-1/2 near-kagome system Vesigneite JEFFREY QUILLIAM, FABRICE BERT, Laboratoire de Physique des Solides, Université Paris-Sud, ROSS COLMAN, DAVID BOLDRIN, ANDREW WILLS, Department of Chemistry, University College London, PHILIPPE MENDELS, Laboratoire de Physique des Solides, Université Paris-Sud — The spin-1/2 kagome lattice antiferromagnet is understood to be an ideal setting in which to find novel quantum spin liquid physics. Here, 51V NMR results are presented on the quantum spin system Vesigneite, which closely approximates such an antiferromagnetic kagome model, possessing a minute 0.7% length difference between inequivalent Cu-Cu bonds. We obtain a measure of the intrinsic magnetic susceptibility of the near-kagome lattice, which shows commonalities with other kagome systems, in particular Herbertsmithite. Meanwhile, the system is found to undergo partial spin freezing at a surprisingly high temperature of $T_C = 9K \simeq J/6$. Through a loss of NMR intensity and detailed analysis of the spectral linewidth, we infer a heterogeneous ground state in which 50% of the spins are very weakly frozen, with a moment of $\sim 0.2 \mu_B$ and the remaining 50% remain dynamic down to very low temperatures. These results are found to be highly consistent with μSR studies, which find a similar frozen fraction and small size of magnetic moment. We propose that the elevated transition temperature and weakly frozen ground state are explained by the Dzyaloshinskii-Moriya interaction and a proximity to the resulting quantum phase transition.