Abstract Submitted for the MAR12 Meeting of The American Physical Society

Local atomic structure of the layered compound $SrFeO_2$ KAZU-MASA HORIGANE, Department of Physics, University of Virginia, ANNA LLO-BET, Los Alamos National Laboratory, KEESEONG PARK, DESPINA LOUCA, Department of Physics, University of Virginia — SrFeO₂ exhibits several unexpected structural and physical properties. Its antiferromagnetic transition temperature $T_N = 473 K$ is unusually high for a two-dimensional layered structure. First-principle calculations on $SrFeO_2$ showed that the Fe 3d down-spin elections occupy the nondegenerate d_{z2} level rather than the degenerate (d_{xz}, d_{yz}) levels. This is in good agreement with the absence of a Jahn-Teller instability and the existence of the three dimensional antiferromagnetic ordering because the out-of plane direct Fe-Fe exchange is comparable in strength to the in-plane Fe-O-Fe superexchange. Therefore, it is expected that there is no structure instability in SrFeO₂. Using the pair distribution function (PDF) analysis to characterize the local structure of SrFeO₂, we observed that the local symmetry is lower than the average P4/mmm crystal symmetry. In particular, the FeO_2 planes are buckled, with two unique buckling angles along the a-axis. The buckling angle of Fe-O-Fe is reduced from 180° with increasing temperature, accompanied by a reduction of the Fe magnetic moment. Thus the local structure instability correlates with the magnetism where the distortions suppress orbital overlap.

> Kazumasa Horigane Department of Physics, University of Virginia

Date submitted: 11 Nov 2011

Electronic form version 1.4