Abstract Submitted for the MAR12 Meeting of The American Physical Society

Spin waves of 2D J_1 - J_2 model and single hole dynamics via nearest neighbor hole hopping SATYAKI KAR, University of North Florida — We study the two dimensional J_1 - J_2 model using the spin wave approximation and find the spin wave modes at different values of parameter $\lambda = J_2/J_1$. Competing antiferromagnetic (π, π) and $(\pi, 0)$ (or, $(0, \pi)$) orders preferred by the J_1 and J_2 terms respectively creates frustration in such a system and the spin wave excitations about different vacuum states are observed for different values of λ . We investigate the stability of different zero spin deviation states as λ is varied from 0 to 1.5. We discuss the band folding of the super-lattice structure that appears with the emergence of the J_2 term and study the different spin wave modes that the system inherits. Dynamics of a foreign hole put in such a system is studied using a t- J_1 - J_2 model and the hole spectra obtained by solving the Dyson's equation self-consistently within the non-crossing approximation are compared with the ARPES spectra from the newly discovered FeAs superconducting compounds.

> Satyaki Kar University of North Florida

Date submitted: 09 Dec 2011

Electronic form version 1.4