Surface Plasmon Based Engineering of Semiconductor Nanowire Optics1 CHANG-HEE CHO, CARLOS O. ASPETTI, Department of Materials Science and Engineering, University of Pennsylvania, MICHAEL E. TURK, JAMES M. KIKKAWA, Department of Physics and Astronomy, University of Pennsylvania, SUNG-WOOK NAM, RITESH AGARWAL, Department of Materials Science and Engineering, University of Pennsylvania — Emission from unthermalized (hot) excitons can be observed from high-quality crystals and quantum-well structures due to decreases in the exciton lifetimes but typically with low yields. By employing a plasmonic nanocavity, we observe efficient hot-exciton emission in core-shell CdS-SiO\textsubscript{2}-Ag nanowires with intensities surpassing those from thermalized excitons \cite{1}. These new spectral characteristics are mediated by whispering gallery plasmonic modes that yield highly intense electromagnetic fields. As a result, the exciton radiative lifetime is decreased by several orders of magnitude. The introduction of a high-quality hybrid plasmonic nanocavity structure significantly changes the photophysics of the host material, demonstrating an approach applicable to other material systems.

1Transient optical work supported by the Department of Energy BES Award No. DESC0002158. Remaining work supported by ARO W911NF-09-1-0477, NIH Director’s New Innovator Award Program, 1-DP2-7251-01, NSF-NSEC-DMR08-32802, and NSF IGERT DGE02-21664.

Michael E. Turk
University of Pennsylvania