Capturing Ion-Solid Interactions with MOS structures

R. SHYAM, Department of Physics and Astronomy, Clemson University, W.R. HARRELL, J.E. HARRISS, Holcombe Dept. of Electrical and Computer Engineering, Clemson University, C.E. SOSOLIK, Department of Physics and Astronomy, Clemson University — We have fabricated metal-oxide-semiconductor (MOS) devices for a study of implantation rates and damage resulting from low energy ion-solid impacts. Specifically, we seek to capture ion irradiation effects on oxides by exposing as-grown SiO$_2$ layers (50 nm to 200 nm) to incident beams of alkali ions with energies in the range of 100 eV to 10 keV. The oxide is analyzed post exposure by encapsulating the irradiated region under a top metallic contact or within a finished MOS device. Characterization of the resulting ion-modified MOS device involves the standard techniques of room temperature and bias-dependent capacitance-voltage (C-V) measurements. The C-V results reveal alkali ion-induced changes in the flatband voltage of irradiated devices which can be used to extract both the range and implantation probabilities of the ions. Biased C-V measurements are utilized to confirm the concentration or dosage of ions in the oxide. A triangular voltage sweep (TVS) measurement at elevated temperatures also reveals the total ionic space charge in the oxide and can be used to extract a mobility for the ions as they pass through the damaged oxide. Comparisons of these measurements to standard device models as well as to ion range calculations in the oxide are presented.

R. Shyam
Dept of Physics and Astronomy, Clemson University, Clemson, SC, USA

Date submitted: 22 Nov 2011 Electronic form version 1.4