Abstract Submitted for the MAR12 Meeting of The American Physical Society

Electronic structure, Fermi surfaces, and electronphonon coupling in La-doped Sr_2TiO_4 and $SrTiO_3^1$ YUE-FENG NIE, SHOUVIK CHATTERJEE, BULAT BURGANOV, ERIC MONKMAN, JOHN HARTER, DANIEL SHAI, Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA, CHE-HUI LEE, DARRELL SCHLOM, Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA, KYLE SHEN, Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA — Sr_2TiO_4 is a quasi-two-dimensional Ruddlesden-Popper structure analogue to SrTiO₃, and is isostructural with the cuprate parent compound La₂CuO₄. Although the electronic structure of SrTiO₃ has been well-explored due to its importance in oxide electronics, little is known about the electronic properties of Sr_2TiO_4 . To investigate this, we synthesized epitaxial La doped Sr_2TiO_4 and $SrTiO_3$ films on (100) LSAT substrates by molecular beam epitaxy (MBE) and investigated the electronic structure using angle-resolved photoemission spectroscopy (ARPES). The electronic structure of 5% La doped Sr_2TiO_4 shows a single electron like band with mostly $Ti-3d_{xy}$ character dispersing across the Fermi surface which corresponds well with LDA calculations. This is in contrast to doped SrTiO₃ where all three t2g bands are degenerate. We also observed signatures of strong electron-phonon coupling in the quasi-two-dimensional Sr_2TiO_4 materials which appear to be absent in three-dimensional $SrTiO_3$.

¹The work is suppdrated at otheo CAttorli Cantle Solid Stater Palsy Rese Dept of Physics, through the National Science Foundation Cornell University, Ithaca, NY 14853, USA

Date submitted: 12 Dec 2011

Electronic form version 1.4