Phase Slips in Topological Superconductor Wire Devices

SAMUEL GOLDBERG, DORON BERGMAN, DAVID PEKKER, GIL REFAEL, California Institute of Technology — We make a detailed study of phase slips in topological superconducting wires and devices based on topological wires. We begin by investigating a device composed of a topological superconducting wire connected to a non-topological wire (T-S). In the T-segment only slips of the phase by multiples of 4π are allowed, while in the S-segment slips by 2π are also allowed. We show that near the interface, 2π phase slips are also allowed and we comment on the consequences of such phase slips for the Aharonov-Casher effect. We also consider an implementation of a q-bit consisting of a T-S-T device, where the quantum information is stored in the parity of the two topological segments via the four Majorana modes. We show that the central S-segment of this type of device can support 2π phase-slips which result in the decoherence of the q-bit.