Abstract Submitted for the MAR12 Meeting of The American Physical Society

Evidence of two-dimensional quantum critical behavior in the superfluid density of deeply underdoped $\mathbf{Bi_2Sr_2CaCu_2O_{8+x}}$ JIE YONG, MICHAEL HINTON, ANDY MC-CRAY, Dept. of Physics, The Ohio State University, M. NAAMNEH, AMIT KANIGEL, Dept. of Physics, Technion, Israel, MOHIT RAN-DERIA, THOMAS LEMBERGER, Dept. of Physics, The Ohio State University — Evidence of two-dimensional (2-D) quantum critical fluctuations is observed in the superfluid density $\mathbf{n}_s(\mathbf{T}) \propto$ $\lambda^{-2}(T)$ of deeply underdoped $Bi_2Sr_2CaCu_2O_{8+x}(Bi-2212)$. Quantum critical behavior is indicated by the evolution of the T-dependence of $n_s(T)/n_s(0)$, which loses any evidence for thermal critical behavior and becomes quasi-linear when underdoping drops the transition temperature T_c below roughly 48K. Two-dimensionality is indicated by the linear scaling of transition temperature T_c with $n_s(0)$. The 2-D behavior contrasts with that of the less anisotropic YBa₂Cu₃O_{7- δ}, which sustains 3D quantum critical fluctuations.

> Jie Yong Ohio State University

Date submitted: 12 Dec 2011 Electronic form version 1.4