Exchange Bias in Ni/Co Multilayers with Perpendicular Anisotropy

SCOTT M. CAMPBELL, Department of Physics, University of South Florida, S.M. MOHSENI, T.N. ANH NGUYEN, Materials Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, R.K. DUMAS, JOHAN AKERMAN, Department of Physics, University of Gothenburg, CASEY W. MILLER, Department of Physics, University of South Florida — We have studied exchange bias in Ta(5nm)/Au(10)/[Ni(t)/Co(0.4)]×5/IrMn(8)/Ta(5) multilayers for Ni thicknesses of 0.8-1.2 nm. The samples were deposited via sputtering and no deposition field was used. The samples were annealed at 200 C in an applied field of 1500 Oe for different durations, then measured by polar Magneto-Optical Kerr Effect at room temperature. We find that the field annealing significantly alters the hysteresis loop shape, giving it more single domain character while simultaneously inducing exchange bias in the direction of the annealing field. After 34 (2 and 32) hrs annealing, the exchange bias of the samples each reach a maximum value ranging from 100 Oe for the thickest Ni to 35 Oe for the thinnest Ni. We find that the samples with the thinner Ni layers approach their exchange bias maximum values for shorter annealing times.

1Supported by NSF, The Swedish Institute, The Swedish Foundation for Strategic Research, The Swedish Research Council and the Knut and Alice Wallenberg Foundation.
2NanOsc AB
3Materials Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, NanOsc AB

Date submitted: 23 Nov 2011

Electronic form version 1.4