Abstract Submitted for the MAR12 Meeting of The American Physical Society

Quasiparticle tunneling in a single-junction transmon qubit¹ DIEGO RISTÉ, JOSEPHINE VAN LEEUWEN, LEONARDO DICARLO, Kavli Institute of Nanoscience, Delft University of Technology — The recent increase in transmon qubit quality factor into the million range [1] makes non-equilibrium quasiparticle tunneling a potentially limiting mechanism for qubit coherence. We investigate the dynamics of quasiparticle tunneling in a single-junction transmon qubit with relaxation time $T_1 = 85 \ \mu s$ ($Q = 2.6 \ million$). The qubit operates at moderate ratio of Josephson to charging energy, $E_J/E_C \sim 30$, where charge parity in the qubit islands is encoded in the qubit transition frequency. Using Ramsey-type and stimulated echo experiments, we investigate quasiparticle tunneling across the qubit junction on time scales short and long compared to T_1 . We observe that the quasiparticle tunneling time for the single-junction qubit is at least as long as T_1 , but shorter than the 1 ms repetition rate. This result is consistent with recent theory and qualitatively different from the two-junction transmon. The dephasing time $T_2^* = 10 \ \mu s$ is limited by slow background charge fluctuations and extended to $T_2 = 95 \ \mu s$ using dynamical decoupling.

[1] Paik et al. arXiv:1105.4652v4

¹Research supported by NWO, FOM, and EU Project SOLID.

Diego Risté Kavli Institute of Nanoscience, Delft University of Technology

Date submitted: 12 Nov 2011

Electronic form version 1.4