Abstract Submitted for the MAR12 Meeting of The American Physical Society

Tuning

the two-dimensional electron gas at the LaAlO₃/SrTiO₃(001) interface by metallic contacts¹ ROSSITZA PENTCHEVA, REMI ARRAS, VICTOR G. RUIZ LOPEZ, Ludwig Maximilians University Munich, Germany, WARREN E. PICKETT, University of California, Davis — Density functional theory calculations reveal that adding a metallic overlayer on LaAlO₃/SrTiO₃(001) reduces/eliminates the electric field within the polar LaAlO₃ film and thus suppresses the thicknessdependent insulator-to-metal transition observed in uncovered films. Independent of the LaAlO₃ thickness both the surface and the interface are metallic, with an enhanced interface carrier density relative to LaAlO₃/SrTiO₃ (001) after the metallization transition. Moreover, a monolayer thick metallic Ti-contact exhibits a finite magnetic moment and for a thin SrTiO₃-substrate induces a spin-polarized 2D electron gas at the *n*-type interface due to confinement effects. The height of the Schottky barrier formed between the metal contact and LaAlO₃ depends strongly on the choice of the overlayer and allows to tune the carrier density at the interface [1].

[1] V. Ruiz López, R. Arras, W. E. Pickett, and R. Pentcheva, arXiv:1106.4205v1.

¹Funding by the DFT, SFB/TR80 is gratefully acknowledged.

Rossitza Pentcheva Ludwig Maximilians University Munich, Germany

Date submitted: 13 Dec 2011

Electronic form version 1.4