Abstract Submitted for the MAR12 Meeting of The American Physical Society

Creating 3D chemical gradients with self-folding microfluidic networks MUSTAPHA JAMAL, YEVGENIY KALININ, AASIYEH ZARAFSHAR, DAVID GRACIAS, Chemical and Biomolecular Engineering, Johns Hopkins University — We describe the reversible self-folding of polymeric films into intricate three-dimensional (3D) microfluidic networks and investigate their utility as bioinspired synthetic vasculature for in vitro tissue culture models. Our fabrication methodology relies on patterning of channels inside the films at the planar microfabrication stage followed by programmable self-folding of the two-dimensional patterned structures. Here self-folding action is enabled by stress gradients which develop in the films due to differential ultraviolet cross-linking and subsequent solvent conditioning. We achieved wafer-scale assembly of micropatterned geometries including helices, polyhedra and corrugated sheets. To demonstrate utility of such self-folded microfluidic devices we present localized chemical delivery of biochemicals in 3D to discrete regions of cells cultured on the curved self-assembled surfaces and in a thick, surrounding hydrogel. We believe that the devices can be used to mimic such natural self-assembled systems as leaves and tissues. Reference: M. Jamal et al., Nature Communications (2011; in press).

> Yevgeniy Kalinin Chemical and Biomolecular Engineering, Johns Hopkins University

Date submitted: 11 Nov 2011 Electronic form version 1.4