Abstract Submitted for the MAR12 Meeting of The American Physical Society

Probing interface reconstructions in multiferroic BiFeO₃ and charge ordered La_{0.5}Ca_{0.5}MnO₃ heterostructures GUNEETA SINGH-BHALLA, MORGAN TRASSIN, YING-HAO CHU, RAMMAMOORTHY RAMESH, Berkeley — Spurred by the potential for device structures with multiple tuning parameters, recent explorations of carefully engineered oxide interfaces have highlighted intriguing possibilities. A famous example includes the LaAlO₃/SrTiO₃ heterostructure where the individual layers are insulating but an electron gas appears at the interface. In similar fashion, the atomically engineered interface between antiferromagnetic BiFeO₃ and ferromagnetic manganite [La,Sr]MnO₃ results in the formation of a ferromagnetic state in BiFeO₃ at the interface. Here we explore the interface between BiFeO₃ and the charge ordered manganite, La_{0.5}Ca_{0.5}MnO₃. The insulating nature of La_{0.5}Ca_{0.5}MnO₃ and BiFeO₃ allows us to directly probe the electronic properties of the interface via transport measurements. A combination of capacitance and field effect measurements combined with structural probes shed new light on the charge ordered manganite and multiferroic interface. We explore the effects of cross-plane ferroelectric switching in BiFeO₃ on charge ordering in La_{0.5}Ca_{0.5}MnO₃, and hence the electronic and magnetic properties of La_{0.5}Ca_{0.5}MnO₃ near the interface. We discuss our results and implications.

> Guneeta Singh-Bhalla Berkeley

Date submitted: 11 Nov 2011 Electronic form version 1.4