Material Specific Design for Room Temperature Superconductivity

O-PAUL ISIKAKU-IRONKWE, The Center for Superconductivity Technologies, (TCST), Department of Physics, Michael Okpara University of Agriculture, Umudike, (MOUAU), Nigeria, UKO OFE, TCST@MOUAU, CHJIJOKE ORIAKU, DAN ASIEGBU, TCST@MOUAU, EMEKA OGUZI, TCST and Department of Chemistry, FUTO, Owerri, Nigeria — The transition temperature, T_c, of superconductors has been increased sevenfold from 23K in Nb$_3$Ge to 164K in Hg-1223. A further two-fold increase would get us to above room temperature superconductivity. Studying high temperature superconductors (HTSCs), we have developed a formula that expresses T_c in terms of electronegativity, valence electrons, N_e, atomic number, Z, formula mass and a coupling constant, K_0. We observe an increasing linear relationship between T_c and K_0. K_0 also correlates with formula mass and atomic number and the number of atoms in the compound.

By our formula, Hg-1223 has $K_0 = 70$. We propose, using our design algorithm, that room temperature superconductivity may be realized in a system with $K_0 = 160$; electronegativity = 2.5, N_e/sqrt $Z = 0.8$.

We proceed to show combinations of oxides and elements that will yield the required parameters for synthesizing reproducible room temperature superconductivity.

1Research support from Dr. M.J. Schaffer, General Atomics, San Diego, CA.

2and RTS Technologies, San Diego CA 92122 O-Paul Isikaku-Ironkwe

The Center for Superconductivity Technologies, Dept of Physics, Michael Okpara University of Agriculture, Umudike, Nigeria

Date submitted: 23 Nov 2011 Electronic form version 1.4