Abstract Submitted for the MAR12 Meeting of The American Physical Society

Impurity-Induced Electronic Nematic State in Iron-Pnictide Superconductors¹ YOUICHI YAMAKAWA, YOSHIO IN-OUE, HIROSHI KONTANI, Nagoya University — We propose that impurity-induced electronic nematic state is realized above the orthorhombic structure transition temperature T_S in iron-pnictide superconductors [1]. In the presence of strong orbital fluctuations near T_S , it is theoretically revealed that a single impurity induces non-local orbital order with C_2 -symmetry, consistently with recent STM/STS measurements. Each impurity-induced C_2 orbital order aligns along a-axis by applying tiny uniaxial pressure along b-axis. In this impurity-induced nematic phase, the resistivity shows sizable in-plane anisotropy $(\rho_b/\rho_a \sim 2)$ even above T_S , actually observed in various "detwinned" samples. The present study indicates the existence of strong orbital fluctuations in iron-pnictide superconductors. [1] Y. Inoue, Y. Yamakawa and H. Kontani, arXiv:1110.2401.

¹This study has been supported by Grants-in-Aid for Scientific Research from MEXT of Japan, and by JST, TRIP.

Youichi Yamakawa Nagoya University

Date submitted: 14 Nov 2011 Electronic form version 1.4