Abstract Submitted for the MAR12 Meeting of The American Physical Society

3He-4He liquid mixtures investigated by neutron imaging technique at low temperatures¹ PATRICK GUMANN, University of Waterloo, JU-LIA SCHERSCHLIGT, DANIEL HUSSEY, DAVID JACOBSON, NIST Center for Neutron Research, DAVID CORY, IVAR TAMINIAU, University of Waterloo -Helium is a unique element which exhibits a variety of different phases and unusual behaviors. It can be found in nature in two stable isotopic forms: ${}^{3}\text{He}$ and ${}^{4}\text{He}$. One of the most profound quantum mechanical effects, superfluidity, occurs below 2.17 K in liquid helium ⁴He and 0.003 K in liquid ³He. There are also interesting phenomena occurring in mixtures of the two isotopes. One demonstrative example is the finite solubility of liquid ³He (a Fermi system) in superfluid ⁴He (a Bose system) even at T = 0 K. This is the basic principle in the operation of a ³He-⁴He dilution refrigerator capable of continuously producing 2 mK. While much has been done in studies of the thermodynamical, quantum properties of liquid helium mixtures, there has not been any attempt to visualize the dynamics of ³He in liquid ⁴He. Presented results of neutron imaging experiments on 0.3 bar liquid ³He-⁴He mixtures, at 1.5K have shown a clear diffusion of ³He driven by the difference in chemical potential. The data were taken for over 12 hours using a high resolution CCD camera.

¹Supported NIST Center for Neutron Research, U.S. Commerce Department

Patrick Gumann University of Waterloo

Date submitted: 14 Nov 2011

Electronic form version 1.4