Abstract Submitted for the MAR12 Meeting of The American Physical Society

A jumping cylinder in an incline RAUL W. GOMEZ, JORGE HER-NANDEZ, VIVIANNE MARQUINA, Facultad de Ciencias, UNAM — The problem of a cylinder of mass m and radius r, with its center of mass out of the cylinder axis, rolling in an incline that makes an angle α respect to the horizontal is analyzed. The equation of motion is solved to obtain the site where the cylinder loses contact with the incline (jumps). Several simplifications are made: the analyzed system consists of an homogeneous disc with a one dimensional straight line of mass parallel to the disc axis at a distance d < r of the center of the cylinder. To compare our results with experimental data, we use a Styrofoam cylinder of radius $r = 10.0 \pm$ 0.05 cm, high $h = 5.55 \pm 0.05 \text{ cm}$ and a mass $m_1 = 24.45 \pm 0.05 \text{ g}$, to which a 9.50 \pm 0.01 mm diameter and 5.10 \pm 0.001 cm long brass road of mass m₂ = 30.75 \pm 0.05 g was imbibed parallel to the disc axis at a distance of 5.40 ± 0.05 cm from it. Then the disc rolls on a 3.20 m long wooden ramp inclined at 30 $^\circ\,$ and 45 $^\circ\,$ respect to the horizontal. To determine the jumping site, the movements were recorded with a high-speed video camera (Casio EX ZR100) at 400 frames per second. The experimental results agree well with the theoretical predictions.

> Vivianne Marquina Facultad de Ciencias, UNAM

Date submitted: 15 Nov 2011

Electronic form version 1.4