A Topological Phase Transition in Models of River Networks

JACOB OPPENHEIM, MARCELO MAGNASCO, Rockefeller University — The classical Scheidegger model of river network formation and evolution is investigated on non-Euclidean geometries, which model the effects of regions of convergent and divergent flows - as seen around lakes and drainage off mountains, respectively. These new models may be differentiated by the number of basins formed. Using the divergence as an order parameter, we see a phase transition in the number of distinct basins at the point of a flat landscape. This is a surprising property of the statistics of river networks and suggests significantly different properties for riverine networks in uneven topography and vascular networks of arteries versus those of veins among others.

Jacob Oppenheim
Rockefeller University

Date submitted: 18 Nov 2011

Electronic form version 1.4