Electronic Griffiths Phases and Quantum Criticality at Disordered Mott Transitions

VLADIMIR DOBROSAVLJEVIC, Director, Condensed Matter Science - Theory, NHMFL Florida State University

The effects of disorder are investigated in strongly correlated electronic systems near the Mott metal-insulator transition. Correlation effects are found\(^1\) to lead to strong disorder screening, a mechanism restricted to low-lying electronic states, very similar to what is observed in underdoped cuprates. These results suggest, however, that this effect is not specific to disordered d-wave superconductors, but is a generic feature of all disordered Mott systems. In addition, the resulting spatial inhomogeneity rapidly increases\(^2\) as the Mott insulator is approached at fixed disorder strength. This behavior, which can be described as an Electronic Griffiths Phase, displays all the features expected for disorder-dominated Infinite-Randomness Fixed Point scenario of quantum criticality.
