Superconductivity in Graphene-Lithium Systems1 DAVID GUZMAN, RADI AL-JISHI, Department of Physics and Astronomy, California State University - Los Angeles, HAMAD ALYAHYAEI, Department of Physics and Astronomy, University of California - Riverside — We present first-principles calculations on systems consisting of a few layers of graphene and lithium. In particular, we investigate the evolution of the electron-phonon coupling strength with an increasing number of layers. We find that for intercalated systems such as C\textsubscript{6}-Li-C\textsubscript{6} or C\textsubscript{6}-Li-C\textsubscript{6}-Li-C\textsubscript{6} the electron-phonon coupling is weak. However, for systems of equal number of graphene and lithium layers, such as C\textsubscript{6}-Li or C\textsubscript{6}-Li-C\textsubscript{6}-Li, the electron-phonon coupling is strong. We investigate the optimal configuration that yields the highest superconducting transition temperature.

1Supported by the NSF under grant No. HRD-0932421 and CSU-LSAMP under grant No. HRD-1026102-518741.