Abstract Submitted for the MAR12 Meeting of The American Physical Society

Spin spiral state in hexagonal NiS¹ RAQUEL LIZARRAGA², ERIK HOLMSTROM³, Instituto de Ciencias Fisicas y Matematicas, LARS NORDSTROM⁴, OLLE ERIKSSON⁵, Department of Physics and Astronomy, SWARUP PANDA⁶, INDRA DASGUPTA⁷, D.D. SARMA⁸, Indian Institute of Science — Previous nesting function calculations on NiS have found instabilities for the magnetic ordering vectors q=(2/3,2/3,0) and q=(1/2,2/9,1) suggesting that the magnetic structure of NiS is non- collinear which does not agree with the experimentally determined antiferromagnetic state. We investigated the electronic and magnetic structure of NiS by means of a full-potential linearized augmented plane wave method within the local spin density approximation plus the Hubbard parameter U. Our method is specially suitable to study noncollinear magnetism where the magne- tization density is allowed to vary in magnitude and direction continuously everywhere in space. Our results show that the ground state is metallic and that the antiferromagnetic state is almost degenerate with spin spirals along certain directions of the Brillouin zone.

¹We acknowledge support from Fondecyt project #11080259.
²Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
³Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
⁴Division of Materials Theory, Uppsala University Uppsala, Sweden
⁵Division of Materials Theory, Uppsala University Uppsala, Sweden
⁶Bangalore 560012, India
⁸Bangalore 560012, India

Raquel Lizarraga Instituto de Ciencias Fisicas y Matematicas

Date submitted: 30 Nov 2011

Electronic form version 1.4