Non-equilibrium relaxation of vortex lines in disordered type-II superconductors

ULRICH DOBRAMYSL, HIBA ASSI, MICHEL PLEIMLING, UWE C. TAUBER, Department of Physics, Virginia Tech — Vortex matter in disordered type-II superconductors display a remarkable wealth of behavior, ranging from hexagonally arranged crystals and a vortex liquid to glassy phases. The type and strength of the disorder has a profound influence on the structural properties of the vortex matter: Randomly distributed weak point pinning sites lead to the destruction of long range order and a Bragg glass phase; correlated, columnar disorder can yield a Bose glass phase with infinite tilt modulus. We employ a three-dimensional elastic line model and apply a Langevin molecular dynamics algorithm to simulate the dynamics of vortex lines in a dissipative medium. We investigate the relaxation of a system of lines that were initially prepared in an out-of-equilibrium state and characterize the transient behavior via two-time quantities. We vary the disorder type and strength and compare our results for random and columnar disorder.

1Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.