Abstract Submitted for the MAR13 Meeting of The American Physical Society

Organic magnetoresistance near saturation: mesoscopic effects in small devices¹ ROBERT ROUNDY, ZEEV VARDENY, MIKHAIL RAIKH, University of Utah — In organic light emitting diodes with small area the current may be dominated by a finite number, N of sites in which the electron-hole recombination occurs. As a result, averaging over the hyperfine magnetic fields, \mathbf{b}_h , that are generated in these sites by the environment nuclei is incomplete. This creates a random (*mesoscopic*) current component, $\delta I(\mathbf{B})$, at field \mathbf{B} having relative magnitude $\sim N^{-1/2}$. We demonstrate that mesoscopic fluctuations develop at fields $|\mathbf{B}| \gg |\mathbf{b}_h|$, where the average magnetoresistance is near saturation. These fluctuations originate from the slow beating between S and T_0 states of the recombining e-h spin pair-partners. We identify the most relevant processes responsible for the current fluctuations as due to anomalously slow beatings that develop in sparse e-h polaron pairs at sites for which the \mathbf{b}_h projections on the external field direction almost coincide. To find the characteristic period $\Delta \mathbf{B}$ of the fluctuations, we calculate the correlator $K(\mathbf{B}, \Delta \mathbf{B}) = \langle \delta I (\mathbf{B} - \Delta \mathbf{B}) \delta I (\mathbf{B} + \Delta \mathbf{B}) \rangle$.

¹Supported by NSF through MRSEC DMR-1121252 and DMR-1104495

Mikhail Raikh University of Utah

Date submitted: 19 Oct 2012

Electronic form version 1.4