Abstract Submitted for the MAR13 Meeting of The American Physical Society

Lifetime of Skyrmions in Cuprates and Other Layered Materials¹ LIUFEI CAI, EUGENE CHUDNOVSKY, DMITRY GARANIN, CUNY Lehman College, CUNY LEHMAN COLLEGE TEAM — Collapse of a skyrmion due to the discreteness of a crystal lattice in isotropic two-dimensional ferro- and antiferromagnets has been studied analytically and by numerical solution of equations of motion for up to 2000×2000 classical spins on a square lattice coupled via Heisenberg exchange interaction. Excellent agreement between analytical and numerical results has been achieved. The lifetime of the skyrmion scales with its initial size, λ_0 , as $(\lambda_0/a)^5$ in ferromagnets and as $(\lambda_0/a)^{2.15}$ in antiferromagnets, with a being the lattice parameter. This makes antiferromagnetic skyrmions significantly shorter lived than ferromagnetic skyrmions.

¹Research supported by DOE grant DE-FG02-93ER45487.

Eugene Chudnovsky CUNY Lehman College

Date submitted: 23 Oct 2012 Electronic form version 1.4