MAR13-2012-000121

Abstract for an Invited Paper for the MAR13 Meeting of the American Physical Society

Investigating the Structural Properties of Integral Membrane Proteins with Pulsed EPR Spectroscopy GARY LORIGAN, Miami University

Very limited structural and dynamic information on proteins embedded inside a membrane currently exist, because they are difficulty to crystalize. New biophysical/structural biology methods are needed to probe these systems in a lipid bilayer. The Lorigan lab is applying unique hybrid NMR and spin-label EPR spectroscopic techniques to study membrane proteins. Magnetic resonance spectroscopic data of ¹⁵N-, ²H-labeled and/or spin-labeled membrane proteins incorporated into vesicles and bicelles will be presented. State-of-the-art pulsed EPR techniques such as Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy, and Double Electron-Electron Resonance (DEER) spectroscopy will be used. The ESEEM technique can determine short to medium range distances (out to about 8 Å) between a site-specific nitroxide spin label and a nearby NMR-active isotopic labeled residue for a variety of different peptides and proteins which ultimately can be used to determine the difference between an α -helical and β -sheet secondary structure. DEER can be used to measure distances between 2 spin labels out to about 70 Å. We have shown a huge improvement is sensitivity with DEER measurements at Q-band when compared to X-band.