Site-preference and valency for rare-earth sites in (R-Ce)2Fe14B [R=La,Nd] magnets

AFTAB ALAM, Ames Laboratory, Ames Iowa, MAHMUD KHAN, Ames Laboratry, Ames Iowa, R.W. MCCALLUM, D.D. JOHNSON, Ames Laboratory and Iowa State University, Ames Iowa — Rare-earth (R) permanent magnets of R2Fe14B have technological importance due to their high energy products, and they have two symmetry distinct R-sites (Wyckoff 4f and 4g) that affect chemistry and valence. Designing magnetic behavior and stability via alloying is technologically relevant to reduce critical (expensive) R-content while retaining key properties; cerium, an abundant (cheap) R-element, offers this potential. We calculate magnetic properties and Ce site preference in (R1-xCe_x)Fe14B [R=La,Nd] using density functional theory (DFT) methods. The Fe moments compare well with neutron scattering data – remain weakly affected by Hubbard U, but improved with spin-orbit coupling. In (La,Ce)2Fe14B, Ce alloys for 0 < x < 1 with a preference for smaller R(4f) sites, as observed, a trend we find unaffected by valence. Whereas in (Nd,Ce)2Fe14B, Ce is predicted to have limited alloying (x < 0.3) with a preference for larger R(4g) sites, resulting in weak partial ordering and segregation. Curie temperatures versus x were predicted for a typical sample processing and verified experimentally. We shall also present some initial results on the critical mixed valency of Ce in related compounds.

1Work at Ames Laboratory was supported by the U.S. Department of Energy, ARPA-E under the REACT program (0472-1526)