Epitaxial Strain Induced Robust Multiferroicity in BiMnO$_3$

XUEZENG LU, XINGAO GONG, HONGJUN XIANG, Fudan University, COMPUTATIONAL CONDENSED MATTER GROUP TEAM — By performing first principles calculations, we investigate the effects of the epitaxial strain on the properties of BiMnO$_3$ films grown along the pseudocubic [001] direction. Unlike the ground state with the centrosymmetric $C2/c$ space group in bulk, two previously unreported phases, namely, paraelectric $Pnma$ and ferroelectric Cc phases, are stabilized by epitaxial strain. Several surprising and interesting phenomena are revealed. In particular, we find a metal-insulator transition between the ferromagnetic metallic state and antiferromagnetic insulating ferroelectric state under compressive epitaxial strain. On the other hand, the tensile epitaxial strain stabilizes the ferromagnetic and ferroelectric Cc state with the large polarization ($P > 80 \mu C/cm^2$) and high Curie temperature (estimated $T_c \sim 395$ K). Moreover, there is a novel intrinsic magnetoelectric coupling in the multiferroic Cc state with the easy magnetization axis tunable by the external electric field.