Long Electron Spin Lifetimes in Armchair Graphene Nanoribbons

MATTHIAS DROTH, GUIDO BURKARD, University of Konstanz, 78457 Konstanz, Germany — Armchair graphene nanoribbons (aGNR) are promising as a host material for electron spin qubits because of their potential for scalability and long coherence times [1]. The spin lifetime T_1 is limited by spin relaxation, where the Zeeman energy is absorbed by lattice vibrations [2], mediated by spin-orbit and electron-phonon coupling. We have calculated T_1 by treating all couplings analytically and find that T_1 can be in the range of seconds for several reasons: (i) Van Vleck cancellation; (ii) weak spin-orbit coupling; (iii) low phonon density; (iv) vanishing coupling to out-of-plane modes due to the electronic structure of the aGNR. Owing to the vanishing nuclear spin of 12C, T_1 is a good measure for overall coherence. These results and recent advances in the controlled production of graphene nanoribbons [3] make this system interesting for classical and quantum spintronics applications.