Abstract Submitted for the MAR13 Meeting of The American Physical Society

Compaction of frictional octahedra N. NIRMAL THYAGU, MAX NEUDECKER, STEPHAN HERMINGHAUS, MATTHIAS SCHROETER, Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany — We perform experiments with frictional polypropylene octahedra to study the packing properties. Starting with the loose packing, compaction of octahedra is done by two types of forcing – a) tapping and b) shearing. The compaction gives rise to crystallization of octahedra due to heterogenous nucleation from the walls. We obtain the X-ray tomograms of the packing configurations as a function of packing fraction. From the contact geometries we obtain results for the packings such as pair correlation function, distance to isostaticity, and spatial & angular correlation functions. We contrast these results with a similar study on the simplest platonic solid, the tetrahedron¹ and the sphere.

¹Jammed frictional tetrahedra are hyperstatic, M. Neudecker, S. Ulrich, S. Herminghaus, M. Schröter. (arXiv:1202.6272v2)

N. Nirmal Thyagu Max Planck Institute for Dynamics and Self-Organization

Date submitted: 01 Nov 2012

Electronic form version 1.4