Abstract Submitted for the MAR13 Meeting of The American Physical Society

Superconductivity and anomalous magnetic phase in LuGe₂ single crystals NAKHEON SUNG, B.K. CHO, Gwangju Institute of Science and Technology (GIST), Y.J. JO, Kyungpook National University, S.K. CHOI, A.I. COLDEA, University of Oxford, H. KIM, R. PROZOROV, Ames Laboratory and Iowa State University — LuGe₂ single crystals (ZrSi₂-type orthorhombic structure, C_{mcm}) were synthesized by the high temperature metal flux method. LuGe₂ was found to be the type-II superconductivity below superconducting transition temperature, $T_c = 2.3$ K. An anomalous magnetic and electric phase below $T^* = 4$ K was found only along b-axis in electrical transport measurement, and confirmed additionally by magnetization and heat capacity measurement. From the heat capacity data, LuGe₂ was found to be the weak coupling BCS type superconductivity at T_c , whereas the anomalous phase above T_c seems to have a close correlation with the superconducting state below T_c . Upper critical field, $H_{c2}(T)$, of the superconductivity exhibits significant anisotropy either along b-axis or along a (and c)-axis. Recently, a possible second superconducting state in superconducting YbSb₂ single crystals, which has the same structure as LuGe₂, was reported. [1] Thus, we will discuss in detail on the anisotropic superconducting properties and the anomalous phase above T_c in terms of the possible second superconductivity as in YbSb₂.

[1] Liang L. Zhao, Stefan Lausberg, H. Kim, M. A. Tanatar, Manuel Brando, R. Prozorov, and E. Morosan, Phys. Rev. B 85, 214526 (2012)

Nakheon Sung Gwangju Institute of Science and Technology (GIST)

Date submitted: 06 Nov 2012 Electronic form version 1.4