Nanopore Translocation Dynamics of star polymers1 RONG WANG, ZHU LIU, Nanjing University, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry — The translocation of polymers through a narrow channel or a nanopore has a significant impact on numerous biological systems and industrial process, examples including rapid DNA sequencing, controlling drug delivery, and designing nanopore sequencing device. We consider the dynamics of flow-induced translocation of star polymers through a nanopore in three dimensions by dissipative particle dynamics approach, focusing on the dependence of the translocation time on the polymer chain length. The scaling of the average translocation time τ vs. the total length N_{tot} of the star polymer with three arms, $\tau \sim N_{\text{tot}}^{1.09 \pm 0.04}$, is obtained in our simulation. We establish that the overall translocation time, with the translocation probability P_{trans}^i and the translocation time τ_i under different translocation paths. We demonstrate that the translocation time τ of star polymers through the nanopore increases with the increase of the total arm numbers, while τ decreases with increasing number the forward arms that are initially squeezed into the nanopore. Our findings may provide a valuable guidance for experimental studies on the conformational and dynamics behaviors of star polymer translocation for further applications.

1This work has been supported by NNSFC (Nos. 20874046 and 21074053) and NBRPC (No. 2010CB923303).