Abstract Submitted for the MAR13 Meeting of The American Physical Society

The Dugganites: A new, frustrated, and potentially multiferroic class of compounds that exhibit rich magnetic behavior HARLYN SIL-VERSTEIN, University of Manitoba, ARZOO SHARMA, AVICHAI STOLLER, KANISHA CRUZ-KAN, CHRISTOPHER WIEBE, University of Winnipeg — $Ba_3NbFe_3Si_2O_{14}$ is a multiferroic langasite (s.g. P321) wherein the Fe³⁺ atoms (S=5/2) occupy isolated trimers that stack along the *c*-axis. The spins uniquely order below $T_N = 26$ K, where single domain helicity simultaneously exists with triangular chirality. Preparations of other langasites of this type are possible, so long as Fe³⁺ remains in the trimer site leaving the magnetism relatively unchanged. This is because Fe^{3+} occupies a tetrahedral site, where most other transition metal ions prefer the octahedral site occupied by Nb⁵⁺. Building on previous research, we have circumvented this problem by replacing Nb^{5+} with Te^{6+} , which is found exclusively in octahedral coordination. Isostructural compounds Pb₃TeCo₃A₂O₁₄ $(A=V^{5+}, P^{5+})$ and $Pb_3TeMn_3P_2O_{14}$ (where the only magnetic ions are Co^{2+} and Mn²⁺ respectively) have been prepared and studied. Despite being isostructural to Ba₃NbFe₃Si₂O₁₄, the dugganites exhibit a rich variety of magnetic behavior, including evidence for multi-k magnetic structural arrangements, long-range coexistence of static and dynamic spins, and spin-spin interactions that potentially exist over 150 unit cells. In at least one dugganite, magnetoelectric coupling was observed at T_N entertaining the possibility that these compounds may also be multiferroic.

> Harlyn Silverstein University of Manitoba

Date submitted: 05 Nov 2012

Electronic form version 1.4